|                           |           |                       |       | MarsSpaceConstruction. LLC Montgomery, TX 77356 All we have to do is SCIENCE the HELL out if this |
|---------------------------|-----------|-----------------------|-------|---------------------------------------------------------------------------------------------------|
|                           |           |                       |       | Texas Registered Engineering Firm F-XXX                                                           |
|                           |           |                       | Δ     | Work by Mars Space Construction, LLC                                                              |
|                           |           | Rec                   |       |                                                                                                   |
|                           |           | que                   |       |                                                                                                   |
| REV. DATE BY APPR NO. FRM | × × × × × | Request for Quotation | A REV |                                                                                                   |
|                           |           |                       |       |                                                                                                   |
|                           |           |                       |       |                                                                                                   |
|                           |           |                       | NOTE  | S:<br>1) XX                                                                                       |

|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         | 1                                                                                                                   |          | - 1   |       |        |                                         |           |                    |                                |            |  |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------|-------|-------|--------|-----------------------------------------|-----------|--------------------|--------------------------------|------------|--|
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         | +                                                                                                                   |          |       |       |        | M                                       |           | MARSSP             | ACECONSTRU                     | CTION. LLC |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                     |          |       |       |        |                                         |           |                    | tgomery, TX 7<br>we have to do |            |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                     |          |       |       |        |                                         |           |                    | CE the HELL or                 |            |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                     |          |       |       |        |                                         | Texas F   | Registered Eng     | ineering Firm FX               | ХХ         |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                     |          |       |       |        |                                         |           | , ,                | Construction, LL               | *          |  |
|                                                                                                          |                                                                                                                      | Re                                                                                                                                                                                                                                               | A<br>RE\                                                                                                                |                                                                                                                     | na Da    | ate   | Appr  | Date   |                                         |           | rship-010<br>XXXXX | Page 2 of 3<br>By:             | REV. A     |  |
|                                                                                                          |                                                                                                                      | ques                                                                                                                                                                                                                                             |                                                                                                                         | REVISION HISTORY                                                                                                    | 5 -      |       |       |        |                                         | 700       |                    | GJR                            | 6/26/2021  |  |
| REV Description Eng Date Appr Date Job No. XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                           |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                     |          |       |       |        |                                         | ion       | <u>l</u>           | •                              |            |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                     |          |       |       |        |                                         |           |                    |                                |            |  |
|                                                                                                          |                                                                                                                      | Quotation                                                                                                                                                                                                                                        |                                                                                                                         | Cyrogenic Society of America, Inc. (web link)                                                                       |          |       |       |        |                                         |           |                    |                                |            |  |
|                                                                                                          |                                                                                                                      | Air Separation This article, written by Dr. John Weisend, was originally published in the Volume 31 Number 2 issue of Cold Facts as part of                                                                                                      |                                                                                                                         |                                                                                                                     |          |       |       |        |                                         |           |                    |                                | s part of  |  |
| his series, Defining Cryogenics.                                                                         |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                     |          |       |       |        |                                         |           |                    |                                | •          |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  | ł                                                                                                                       | Air separation is one of the largest, as well as earliest,                                                          | indu     | ıstri | al an | nlicat | ions of cry                             | ogenics   | In this prod       | cess cryogeni                  | c          |  |
| DATE                                                                                                     | ×                                                                                                                    |                                                                                                                                                                                                                                                  |                                                                                                                         | temperatures are used to separate air into its constitue                                                            |          |       |       |        |                                         |           |                    |                                |            |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  | carbon dioxide (0.3%). Trace gases such as krypton, neon, xenon and helium total far less than 1%. Water vapor can also |                                                                                                                     |          |       |       |        |                                         |           |                    |                                |            |  |
| ВҮ                                                                                                       | ×                                                                                                                    |                                                                                                                                                                                                                                                  |                                                                                                                         | be a significant fraction of air but it is removed along w                                                          | /itin Ca | arb   | on al | oxide  | at the star                             | t or the  | separation         | process.                       |            |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         | The components of air have many applications in indu                                                                |          |       |       |        |                                         |           |                    |                                |            |  |
| APPR.                                                                                                    | ×                                                                                                                    |                                                                                                                                                                                                                                                  |                                                                                                                         | gases is a multibillion dollar industry. Air separation is such as Air Products, Air Liquide, Linde and Praxa       |          | rin   | cipal | part   | of the bus                              | iness c   | of large ind       | ustrial gas fir                | ms         |  |
| Ŗ                                                                                                        |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         | Such as All Froducts, All Liquide, Linde and Fraze                                                                  |          |       |       |        |                                         |           |                    |                                |            |  |
| NO.                                                                                                      | ×                                                                                                                    |                                                                                                                                                                                                                                                  |                                                                                                                         | There are essentially two production models used in the                                                             |          |       | •     |        | •                                       |           |                    |                                |            |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         | air and the resulting components are then shipped to o<br>second, an air separation plant is located at the custor  |          |       |       |        |                                         |           |                    |                                |            |  |
| FIRM                                                                                                     | ×                                                                                                                    |                                                                                                                                                                                                                                                  |                                                                                                                         | steel mill or nitrogen for use in pressurizing oil fields to                                                        | incre    | eas   | e rec | over   | y. The rema                             | aining g  | ases not of        | of direct interest to the      |            |  |
|                                                                                                          |                                                                                                                      | <u> </u>                                                                                                                                                                                                                                         |                                                                                                                         | customer are either sold to other customers or vented                                                               |          |       |       |        |                                         |           |                    |                                | aration    |  |
| plants are quite large, with typical capacities being thousands of tonnes per day of oxygen and nitroger |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                     |          |       |       |        |                                         |           | n produced.        |                                |            |  |
|                                                                                                          | Cryogenic air separation is based on the principle of rectification, which is defined in Barron as "the cascading of |                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                     |          |       |       |        |                                         |           |                    |                                |            |  |
|                                                                                                          |                                                                                                                      | evaporations and condensations carried out in counterflow." A simple version of this is shown in Figure 1. Air is complete and all of the water, hydrocarbons and carbon dioxide are removed. The resulting air is cooled down via heat exchange |                                                                                                                         |                                                                                                                     |          |       |       |        |                                         |           |                    |                                |            |  |
|                                                                                                          |                                                                                                                      | colder flows of nitrogen and oxygen and then expanded via both expansion engines and valves to near the saturation                                                                                                                               |                                                                                                                         |                                                                                                                     |          |       |       |        |                                         |           |                    |                                |            |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         | temperature of oxygen and nitrogen. This cold, near-si-<br>has a higher boiling temperature than nitrogen, as the   |          |       |       |        |                                         |           |                    |                                |            |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         | portion, which flows down, becomes progressively rich                                                               | er in    | ОХ    | ygen. | , whil | e the gas p                             | ortion, v | which flows        | up, becomes                    | •          |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         | progressively richer in nitrogen. The liquid oxygen at the while the gas at the top is almost pure nitrogen, with s |          |       |       |        |                                         |           |                    |                                |            |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         | plant was designed only to produce crude oxygen and                                                                 |          |       |       |        | •                                       |           |                    |                                |            |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         | technique exist. One of the most common uses two re                                                                 | ctifica  | atio  | n col | umns   | placed on                               | top of e  | each other,        | operating at di                | fferent    |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         | pressures. This arrangement (known as the Linde dou<br>oxygen and nitrogen. Additional columns can be adde-         |          |       |       |        |                                         |           |                    | much higher p                  | urity      |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                     |          | •     |       | 9      | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ) p to a. |                    |                                |            |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                     |          |       |       |        |                                         |           |                    |                                |            |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                     |          |       |       |        |                                         |           |                    |                                |            |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                     |          |       |       |        |                                         |           |                    |                                |            |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                     |          |       |       |        |                                         |           |                    |                                |            |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                     |          |       |       |        |                                         |           |                    |                                |            |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                     |          |       |       |        |                                         |           |                    |                                |            |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                     |          |       |       |        |                                         |           |                    |                                |            |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                     |          |       |       |        |                                         |           |                    |                                |            |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                     |          |       |       |        |                                         |           |                    |                                |            |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                     |          |       |       |        |                                         |           |                    |                                |            |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  | NO.                                                                                                                     | TES:                                                                                                                |          |       |       |        |                                         |           |                    |                                |            |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         | 1) XX                                                                                                               |          |       |       |        |                                         |           |                    |                                |            |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                     |          |       |       |        |                                         |           |                    |                                |            |  |
|                                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                  | 1                                                                                                                       |                                                                                                                     |          |       |       |        |                                         |           |                    |                                |            |  |



The need for air separation plants to compress and move thousands of tonnes of air a day means that they require significant amounts of energy. Thus, a number of energy recovery schemes are typically used, including using the work done by the gas on the expansion engines to help power the compressors. Research on modeling and optimizing the rectification columns and heat exchangers to improve the product purity while reducing energy consumption is ongoing.

Additional details on cryogenic air separation may be found in Cryogenic Engineering, R. Barron, McGraw-Hill (1966); Separation of Gases, W. H. Isalski, Oxford University Press (1989); and "Air Separation Plant Design," D. J. Hersh and J. M. Abrado, Cryogenics (July 1977). Examples of modeling of air separation plant components include "Simulation of Multistream Plate-Fin Heat Exchangers of an Air Separation Unit," R. Boehme et al., Cryogenics 43 (2003) and "Hybrid Model of Structured Packing Column for Cryogenic Air Separation," Z. Wu et al. Proc. ICEC 24 (2013). An example of using heat recovery to reduce energy use in air separation plants is presented in "A Novel Cryogenic Air Separation Process Based on Self-Heat Recuperation," Y. Kansha et al., Separation and Purification Technology 77 (2011). The relative merits of cryogenic air separation and pressure temperature swing adsorption techniques are discussed in "Comparative Analysis of Cryogenic and PTSA Technologies for Systems of Oxygen Production," T. Banaszkiewicz et al. in Adv. Cryo. Engr. Vol 59b (2014). A description of the Air Liquide helium liquefier built in Qatar may be found in "Ras Laffan Helium Recovery Unit HeRUII Project," R. Ali Said et al., Proc ICEC 2014 (at press).

NOTES:

1) XX